CHAPTER 10- Chemical Reactions

- What information can be determined from a balanced equation
- 2. List the indicators that a chemical reaction has occurred
- 3. Define spectator ions
- Identify synthesis, decomposition, single displacement, double displacement and combustion reactions
- 5. Balance chemical equations and predict their products
- Write net ionic equations for single and double displacement reactions
- 7. Define "chemical reaction"
- Determine oxidation and reduction in a single replacement reaction

CHAPTER 12- Stoichiometry

- 1. Define the law of conservation of mass
- 2. Define Limiting and excess reagent
- Determine the limiting and excess reagents from given data
- 4. Define Percent Yield and calculate it from given data
- 5. a. What mass of iron must react with excess oxygen in order to form 4.81 moles of iron (III) oxide? b. What mass of iron is needed to react with 40.0 g of oxygen?
- 6. 6.00 moles of nitrogen gas react with 6.00 moles of hydrogen gas to produce ammonia.
 - a. what is the limiting reactant?
 - b. how many grams of ammonia are produced?

CHAPTER15 - Solutions

- Explain the effect of adding more solute to unsaturated, saturated and supersaturated solutions.
- 2. Explain how temperature and pressure affect solubility.
- 3. How many grams of AlCl₃ are required to make a 2.25m solution in 30.0 g of water?
- 4. What volume of 12M HCl is needed to prepare 250 mL of 0.20M HCl?
- 5. Which will have the greatest effect on ΔT_f at the same molality: $C_{12}H_{22}O_{11}$, MgBr₂, AlCl₃, or NH₄NO₃?

CHAPTER 16 B- Thermochemistry

- 1. For a reaction ΔH_{rxn} = -81 kJ and ΔS_{rxn} = -215 J/K. Is it spontaneous at 50.0°C?
- 2. Find ΔH : $2B(s) + 3H_2(g) \rightarrow B_2H_6(g)$ Given:

 $2B(s) + 3/2 O_2(g) \rightarrow B_2O_3(s)$

 Δ H = -1273 kJ

 $B_2H_6(g) + 3 O_2(g) \rightarrow B_2O_3(s) + 3 H_2O(g) \Delta H = -2035 kJ$

 $H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(I)$

 Δ H= -286 kJ

 $H_2O(I) \rightarrow H_2O(g)$

 Δ H= 44 kJ

3. Find the S° for the reaction:

 $NaOH(s) + H_2SO_4(aq) \rightarrow H_2O(l) + Na_2SO_4(s)$

Substance	ΔH°(kj/mol)	ΔG°(kj/mol)	ΔS°(J/molK)
H ₂ O(I)	-286	-237	70.
Na ₂ SO ₄ (s)	-1387	-1270.	150.
NaOH(s)	-426	-400.0	
H ₂ SO ₄ (aq)	-909	-745	20.

VOCAB:

Reactant product coefficient solubility rules

Activity series, oxidation, reduction

- c. how many moles of the excess reactant remain?
- d. if 30.0g of ammonia are produced, what is the percent error?
- e. What is the percent yield?
- f. how many liters of ammonia are produced at STP?
- 7. What volume of $SO_2(g)$ is produced from 32.5 g of ZnS at 23°C and 103.3 kPa? ZnS + $O_2 \rightarrow$ ZnO + SO_2

VOCAB:

Excess reactant

limiting reactant

% error % yield

- 6. What is the molarity of a solution containing 26.5g of NaCl in enough water to make 275 mL of solution?
- 7. What volume of 12M HCl is needed to prepare 250 mL of 0.20M HCl?
- 8. Explain the effect of a solute on the boiling point, freezing point and vapor pressure of a solvent.

VOCAB: solvation

solubility

Dissociation

ionization

Like dissolves like

- 4. Determine the signs for $\Delta H,\,\Delta S$, ΔG when a sample of water condenses.
- 5. What is the sign of ΔS as the ammonium nitrate dissociate. Is the temperature of water increasing or decreasing?

 $NH_4NO_{3 (s)} \rightarrow NH_4^{+}_{(aq)} + NO_3^{-}_{(aq)}$

ΔH= +25.69 KJ

VOCAB: endothermic

exothermic

order

disorder

Spontaneity Heat capacity specific heat

Entropy

enthalpy Gibbs free energy

CHAPTER 17 – Kinetics

1 $2NO(a) + H_{-}(a) \rightarrow N_{-}(a) + 2H_{-}O(a)$

	 2NO(g) + H₂(g) 	$\rightarrow N_2(g) + 2n_2O(g)$	
	Initial [NO]	Initial [H ₂]	Rate of
	M	M	Rxn M/s
	4.0 x 10 ⁻³	2.0 x 10 ⁻³	1.2 x 10 ⁻⁵
-	8.0 x 10 ⁻³	2.0 x 10 ⁻³	4.8 x 10 ⁻⁵
	4.0 x 10 ⁻³	4.0 x 10 ⁻³	2.4 x 10 ⁻⁵

- a. Determine the rate law expression.
- b. Calculate the rate law constant.
- What would be the rate if $[NO]=[H_2]=0.050M$ c.
- d. What is the overall order of the reaction?
- 2. $H_2O_2 + I^- \rightarrow H_2O + IO^-$ (fast)

 $H_2O_2 + IO \rightarrow H_2O + O_2 + I - (slow)$

- a. What is the overall reaction?
- b. Identify the catalyst.

CHAPTER 18- Equilibrium

- 1. Calculate K_{eq} given the equilibrium concentrations are: [NOBr] = 0.0474M, [NO] = 0.312M, and $[Br_2] = 0.259M$ $2NO(g) + Br_2(g) \leftrightarrow 2NOBr(g)$
- 2. How would equilibrium be affected for:

 $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g) + heat$

- a. Increase concentration of PCl₅
- b. Decrease PCl₃ concentration
- Increased the volume of the container

CHAPTER 19 - Acids and bases

State whether the following are acids or bases for 1-4

- 1. Have a sour taste
- 3. Feel slippery
- 2. React with metals
- 4. Turn blue litmus paper

- 5. Define acids and bases according to Arrhenius and Bronsted-Lowry.
- 6. Identify each substance as acid, base, conjugate acid or conjugate base: H₂S + H₂O → HS + H₃O+
- 7. Give the conjugate acids of: NH₃ and Br.
- 8. Give the conjugate bases of: H_3O^+ and HSO_4^- .
- 9. Find the pH of 0.75M HCl.
- 10. Find the molarity of a KOH solution with a pH of 9.5.
- 11. Is the solution in #27 acidic or basic?
- 12. If 43.5 mL of 0.15M HBr is required to neutralize 25.0 mL of Ca(OH)₂, what is the molarity of Ca(OH)₂?
- 13. What is the $[H_3O^{\dagger}]$ in a 0.100M of HCN which has a $K_a = 6.17 \times 10^{-10}$?

First Half of the Year:

Significant figures Nomenclature (for stoichiometry) Equation writing (for stoichiometry) Periodic Table:

Families

Metals vs. nonmetals

Valence electrons/charges of ions

Bonding:

Ionic - ions involved & properties

Covalent- atoms involved & properties

- c. Identify the intermediate.
- What is the rate law expression?
- 3. Given: $rate = k [A]^{2}[B]$ what would happen to the rate
 - a. [A] is doubled?
 - b. [B] is halved?
 - c. [A] is doubled and [B] is tripled?

VOCAB: collision theory

rate law

Reaction order

factors affecting rates

Catalyst

specific rate constant

Activation energy Activated complex reaction mechanism

rate determining step

d. Add a catalyst.

- Cool the reaction vessel
- 3. Calculate the [F] in a saturated solution of PbF2 given the $K_{sp} = 3.3 \times 10^{-8}$.
- Predict if a precipitate will form if 125 mL of 0.010M K₂SO₄ is mixed with 250 mL of 0.015M CaBr₂. K_{sp} of CaSO₄ = 4.9 x

VOCAB: LeChatelier's Principle

common ion effect

- 14. Calculate K_a for a 0.100M of HClO that has a pH of
- 15. Show how the addition of a strong acid or base does not significantly change the pH of a solution containing the HC₂H₃O₂/C₂H₃O₂ buffer.

VOCAB: hydronium ion

neutralization reaction

Amphoteric

titration

Strong/weak acid/base

equivalence point

buffer

Mole Concept Hydrogen bonding Vapor pressure and boiling point relationship